Giudice, L. C. & Kao, L. C. Endometriosis. Lancet 364, 1789–1799. https://doi.org/10.1016/s0140-6736(04)17403-5 (2004).
Google Scholar
ASRM. Revised American Society for Reproductive Medicine classification of endometriosis. Fertil. Steril. 1997(67), 817–821 (1996).
Burney, R. O. & Giudice, L. C. Pathogenesis and pathophysiology of endometriosis. Fertil. Steril. 98, 511–519. https://doi.org/10.1016/j.fertnstert.2012.06.029 (2012).
Google Scholar
Holoch, K. J. & Lessey, B. A. Endometriosis and infertility. Clin. Obstet. Gynecol. 53, 429–438. https://doi.org/10.1097/GRF.0b013e3181db7d71 (2010).
Google Scholar
Da Broi, M. G. & Navarro, P. A. Oxidative stress and oocyte quality: Ethiopathogenic mechanisms of minimal/mild endometriosis-related infertility. Cell Tissue Res. 364, 1–7. https://doi.org/10.1007/s00441-015-2339-9 (2016).
Google Scholar
Simon, C. et al. Outcome of patients with endometriosis in assisted reproduction: Results from in-vitro fertilization and oocyte donation. Hum. Reprod. 9, 725–729 (1994).
Google Scholar
Sung, L., Mukherjee, T., Takeshige, T., Bustillo, M. & Copperman, A. B. Endometriosis is not detrimental to embryo implantation in oocyte recipients. J. Assist. Reprod. Genet. 14, 152–156 (1997).
Google Scholar
Da Broi, M. G. et al. Increased concentration of 8-hydroxy-2’-deoxyguanosine in follicular fluid of infertile women with endometriosis. Cell Tissue Res. https://doi.org/10.1007/s00441-016-2428-4 (2016).
Google Scholar
Garcia-Velasco, J. A. & Arici, A. Is the endometrium or oocyte/embryo affected in endometriosis?. Hum. Reprod. 14(Suppl 2), 77–89 (1999).
Google Scholar
Barcelos, I. D. et al. Down-regulation of the CYP19A1 gene in cumulus cells of infertile women with endometriosis. Reprod. Biomed. Online 30, 532–541. https://doi.org/10.1016/j.rbmo.2015.01.012 (2015).
Google Scholar
Barcelos, I. D. et al. Comparative analysis of the spindle and chromosome configurations of in vitro-matured oocytes from patients with endometriosis and from control subjects: A pilot study. Fertil. Steril. 92, 1749–1752. https://doi.org/10.1016/j.fertnstert.2009.05.006 (2009).
Google Scholar
Donabela, F. C., Meola, J., Padovan, C. C., de Paz, C. C. & Navarro, P. A. Higher SOD1 gene expression in cumulus cells from infertile women with moderate and severe endometriosis. Reprod. Sci. 22, 1452–1460. https://doi.org/10.1177/1933719115585146 (2015).
Google Scholar
Da Broi, M. G., Malvezzi, H., Paz, C. C., Ferriani, R. A. & Navarro, P. A. Follicular fluid from infertile women with mild endometriosis may compromise the meiotic spindles of bovine metaphase II oocytes. Hum. Reprod. 29, 315–323. https://doi.org/10.1093/humrep/det378 (2014).
Google Scholar
Andrade, A. Z. et al. Serum markers of oxidative stress in infertile women with endometriosis. Rev. Bras. Ginecol. Obstet. 32, 279–285 (2010).
Google Scholar
Da Broi, M. G. et al. Influence of follicular fluid and cumulus cells on oocyte quality: Clinical implications. J. Assist. Reprod. Genet. 35, 735–751. https://doi.org/10.1007/s10815-018-1143-3 (2018).
Google Scholar
Bulletti, C., Coccia, M. E., Battistoni, S. & Borini, A. Endometriosis and infertility. J. Assist. Reprod. Genet. 27, 441–447. https://doi.org/10.1007/s10815-010-9436-1 (2010).
Google Scholar
Barnhart, K., Dunsmoor-Su, R. & Coutifaris, C. Effect of endometriosis on in vitro fertilization. Fertil. Steril. 77, 1148–1155. https://doi.org/10.1016/s0015-0282(02)03112-6 (2002).
Google Scholar
Ouandaogo, Z. G. et al. Differences in transcriptomic profiles of human cumulus cells isolated from oocytes at GV, MI and MII stages after in vivo and in vitro oocyte maturation. Hum. Reprod. 27, 2438–2447. https://doi.org/10.1093/humrep/des172 (2012).
Google Scholar
Ouandaogo, Z. G. et al. Human cumulus cells molecular signature in relation to oocyte nuclear maturity stage. PLoS ONE 6, e27179. https://doi.org/10.1371/journal.pone.0027179 (2011).
Google Scholar
Assou, S., Haouzi, D., De Vos, J. & Hamamah, S. Human cumulus cells as biomarkers for embryo and pregnancy outcomes. Mol. Hum. Reprod. 16, 531–538. https://doi.org/10.1093/molehr/gaq032 (2010).
Google Scholar
McKenzie, L. J. et al. Human cumulus granulosa cell gene expression: A predictor of fertilization and embryo selection in women undergoing IVF. Hum. Reprod. 19, 2869–2874. https://doi.org/10.1093/humrep/deh535 (2004).
Google Scholar
Tanghe, S., Van Soom, A., Nauwynck, H., Coryn, M. & de Kruif, A. Minireview: Functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol. Reprod. Dev. 61, 414–424. https://doi.org/10.1002/mrd.10102 (2002).
Google Scholar
Furger, C., Cronier, L., Poirot, C. & Pouchelet, M. Human granulosa cells in culture exhibit functional cyclic AMP-regulated gap junctions. Mol. Hum. Reprod. 2, 541–548 (1996).
Google Scholar
Albertini, D. F. & Barrett, S. L. Oocyte-somatic cell communication. Reprod. Suppl. 61, 49–54 (2003).
Google Scholar
Combelles, C. M., Carabatsos, M. J., Kumar, T. R., Matzuk, M. M. & Albertini, D. F. Hormonal control of somatic cell oocyte interactions during ovarian follicle development. Mol. Reprod. Dev. 69, 347–355. https://doi.org/10.1002/mrd.20128 (2004).
Google Scholar
Hizaki, H. et al. Abortive expansion of the cumulus and impaired fertility in mice lacking the prostaglandin E receptor subtype EP(2). Proc. Natl. Acad. Sci. USA 96, 10501–10506 (1999).
Google Scholar
Allegra, A. et al. The gene expression profile of cumulus cells reveals altered pathways in patients with endometriosis. J. Assist. Reprod. Genet. 31, 1277–1285. https://doi.org/10.1007/s10815-014-0305-1 (2014).
Google Scholar
da Luz, C. M. et al. PTGS2 down-regulation in cumulus cells of infertile women with endometriosis. Reprod. Biomed. Online 35, 379–386. https://doi.org/10.1016/j.rbmo.2017.06.021 (2017).
Google Scholar
Da Luz, C. M. et al. Altered transcriptome in cumulus cells of infertile women with advanced endometriosis with and without endometrioma. Reprod. Biomed. Online 42, 952–962. https://doi.org/10.1016/j.rbmo.2021.01.024 (2021).
Google Scholar
Poli-Neto, O. B., Meola, J., Rosa, E. S. J. C. & Tiezzi, D. Transcriptome meta-analysis reveals differences of immune profile between eutopic endometrium from stage I-II and III-IV endometriosis independently of hormonal milieu. Sci. Rep. 10, 313. https://doi.org/10.1038/s41598-019-57207-y (2020).
Google Scholar
Adriaenssens, et al. Cumulus cell gene expression is associated with oocyte developmental quality and influenced by patient and treatment characteristics. Hum. Reprod. 25, 1259–1270. https://doi.org/10.1093/humrep/deq049 (2010).
Google Scholar
Assou, S. et al. The human cumulus–oocyte complex gene-expression profile. Hum. Reprod. 21, 1705–1719. https://doi.org/10.1093/humrep/del065 (2006).
Google Scholar
Hamel, M. et al. Identification of differentially expressed markers in human follicular cells associated with competent oocytes. Hum. Reprod. 23, 1118–1127. https://doi.org/10.1093/humrep/den048 (2008).
Google Scholar
van Montfoort, A. P. et al. Differential gene expression in cumulus cells as a prognostic indicator of embryo viability: A microarray analysis. Mol. Hum. Reprod. 14, 157–168. https://doi.org/10.1093/molehr/gam088 (2008).
Google Scholar
Bettegowda, A. et al. Identification of novel bovine cumulus cell molecular markers predictive of oocyte competence: Functional and diagnostic implications. Biol. Reprod. 79, 301–309. https://doi.org/10.1095/biolreprod.107.067223 (2008).
Google Scholar
Assidi, M. et al. Identification of potential markers of oocyte competence expressed in bovine cumulus cells matured with follicle-stimulating hormone and/or phorbol myristate acetate in vitro. Biol. Reprod. 79, 209–222. https://doi.org/10.1095/biolreprod.108.067686 (2008).
Google Scholar
Ferrero, H. et al. Single-cell RNA sequencing of oocytes from ovarian endometriosis patients reveals a differential transcriptomic profile associated with lower quality. Hum. Reprod. 34, 1302–1312. https://doi.org/10.1093/humrep/dez053 (2019).
Google Scholar
Takele Assefa, A., Vandesompele, J. & Thas, O. On the utility of RNA sample pooling to optimize cost and statistical power in RNA sequencing experiments. BMC Genomics 21, 312. https://doi.org/10.1186/s12864-020-6721-y (2020).
Google Scholar
Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21. https://doi.org/10.1093/bioinformatics/bts635 (2013).
Google Scholar
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. https://doi.org/10.1186/s13059-014-0550-8 (2014).
Google Scholar
Team RDC. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2008).
Saito, H. et al. Endometriosis and oocyte quality. Gynecol. Obstet. Invest. 53(Suppl 1), 46–51 (2002).
Google Scholar
Yanushpolsky, E. H. et al. Effects of endometriomas on ooccyte quality, embryo quality, and pregnancy rates in in vitro fertilization cycles: A prospective, case-controlled study. J. Assist. Reprod. Genet. 15, 193–197. https://doi.org/10.1023/a:1023048318719 (1998).
Google Scholar
Jianini, B. et al. Peritoneal fluid from infertile women with minimal/mild endometriosis compromises the meiotic spindle of metaphase II bovine oocytes: A pilot study. Reprod. Sci. 24, 1304–1311. https://doi.org/10.1177/1933719116687658 (2017).
Google Scholar
Pellicer, A. et al. The follicular and endocrine environment in women with endometriosis: Local and systemic cytokine production. Fertil. Steril. 70, 425–431 (1998).
Google Scholar
Da Broi, M. G., Jordão, A. A. Jr., Ferriani, R. A. & Navarro, P. A. Oocyte oxidative DNA damage may be involved in minimal/mild endometriosis-related infertility. Mol. Reprod. Dev. 85, 128–136. https://doi.org/10.1002/mrd.22943 (2018).
Google Scholar
Lin, X. et al. Excessive oxidative stress in cumulus granulosa cells induced cell senescence contributes to endometriosis-associated infertility. Redox. Biol. 30, 101431. https://doi.org/10.1016/j.redox.2020.101431 (2020).
Google Scholar
Zhang, R. N. et al. The CXCL12-CXCR4 signaling promotes oocyte maturation by regulating cumulus expansion in sheep. Theriogenology 107, 85–94. https://doi.org/10.1016/j.theriogenology.2017.10.039 (2018).
Google Scholar
Liu, Z. et al. Interleukin-6: An autocrine regulator of the mouse cumulus cell-oocyte complex expansion process. Endocrinology 150, 3360–3368. https://doi.org/10.1210/en.2008-1532 (2009).
Google Scholar
Liu, Z., Shimada, M. & Richards, J. S. The involvement of the Toll-like receptor family in ovulation. J. Assist. Reprod. Genet. 25, 223–228. https://doi.org/10.1007/s10815-008-9219-0 (2008).
Google Scholar
Büscher, U., Chen, F. C., Kentenich, H. & Schmiady, H. Cytokines in the follicular fluid of stimulated and non-stimulated human ovaries; is ovulation a suppressed inflammatory reaction?. Hum. Reprod. 14, 162–166. https://doi.org/10.1093/humrep/14.1.162 (1999).
Google Scholar
Sarapik, A. et al. Follicular proinflammatory cytokines and chemokines as markers of IVF success. Clin. Dev. Immunol. 2012, 606459. https://doi.org/10.1155/2012/606459 (2012).
Google Scholar
Bradley, J. R. TNF-mediated inflammatory disease. J. Pathol. 214, 149–160. https://doi.org/10.1002/path.2287 (2008).
Google Scholar
Fülöp, C. et al. Impaired cumulus mucification and female sterility in tumor necrosis factor-induced protein-6 deficient mice. Development 130, 2253–2261. https://doi.org/10.1242/dev.00422 (2003).
Google Scholar
Milner, C. M. & Day, A. J. TSG-6: A multifunctional protein associated with inflammation. J. Cell Sci. 116, 1863–1873. https://doi.org/10.1242/jcs.00407 (2003).
Google Scholar
Richards, J. S., Russell, D. L., Robker, R. L., Dajee, M. & Alliston, T. N. Molecular mechanisms of ovulation and luteinization. Mol. Cell Endocrinol. 145, 47–54. https://doi.org/10.1016/s0303-7207(98)00168-3 (1998).
Google Scholar
Gérard, N., Caillaud, M., Martoriati, A., Goudet, G. & Lalmanach, A. C. The interleukin-1 system and female reproduction. J. Endocrinol. 180, 203–212. https://doi.org/10.1677/joe.0.1800203 (2004).
Google Scholar