Transcriptomic analysis of cumulus cells shows altered pathways in patients with minimal and mild endometriosis

  • Giudice, L. C. & Kao, L. C. Endometriosis. Lancet 364, 1789–1799. https://doi.org/10.1016/s0140-6736(04)17403-5 (2004).

    Article 
    PubMed 

    Google Scholar 

  • ASRM. Revised American Society for Reproductive Medicine classification of endometriosis. Fertil. Steril. 1997(67), 817–821 (1996).

    Google Scholar 

  • Burney, R. O. & Giudice, L. C. Pathogenesis and pathophysiology of endometriosis. Fertil. Steril. 98, 511–519. https://doi.org/10.1016/j.fertnstert.2012.06.029 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Holoch, K. J. & Lessey, B. A. Endometriosis and infertility. Clin. Obstet. Gynecol. 53, 429–438. https://doi.org/10.1097/GRF.0b013e3181db7d71 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Da Broi, M. G. & Navarro, P. A. Oxidative stress and oocyte quality: Ethiopathogenic mechanisms of minimal/mild endometriosis-related infertility. Cell Tissue Res. 364, 1–7. https://doi.org/10.1007/s00441-015-2339-9 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Simon, C. et al. Outcome of patients with endometriosis in assisted reproduction: Results from in-vitro fertilization and oocyte donation. Hum. Reprod. 9, 725–729 (1994).

    CAS 
    Article 

    Google Scholar 

  • Sung, L., Mukherjee, T., Takeshige, T., Bustillo, M. & Copperman, A. B. Endometriosis is not detrimental to embryo implantation in oocyte recipients. J. Assist. Reprod. Genet. 14, 152–156 (1997).

    CAS 
    Article 

    Google Scholar 

  • Da Broi, M. G. et al. Increased concentration of 8-hydroxy-2’-deoxyguanosine in follicular fluid of infertile women with endometriosis. Cell Tissue Res. https://doi.org/10.1007/s00441-016-2428-4 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Garcia-Velasco, J. A. & Arici, A. Is the endometrium or oocyte/embryo affected in endometriosis?. Hum. Reprod. 14(Suppl 2), 77–89 (1999).

    Article 

    Google Scholar 

  • Barcelos, I. D. et al. Down-regulation of the CYP19A1 gene in cumulus cells of infertile women with endometriosis. Reprod. Biomed. Online 30, 532–541. https://doi.org/10.1016/j.rbmo.2015.01.012 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Barcelos, I. D. et al. Comparative analysis of the spindle and chromosome configurations of in vitro-matured oocytes from patients with endometriosis and from control subjects: A pilot study. Fertil. Steril. 92, 1749–1752. https://doi.org/10.1016/j.fertnstert.2009.05.006 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Donabela, F. C., Meola, J., Padovan, C. C., de Paz, C. C. & Navarro, P. A. Higher SOD1 gene expression in cumulus cells from infertile women with moderate and severe endometriosis. Reprod. Sci. 22, 1452–1460. https://doi.org/10.1177/1933719115585146 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Da Broi, M. G., Malvezzi, H., Paz, C. C., Ferriani, R. A. & Navarro, P. A. Follicular fluid from infertile women with mild endometriosis may compromise the meiotic spindles of bovine metaphase II oocytes. Hum. Reprod. 29, 315–323. https://doi.org/10.1093/humrep/det378 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Andrade, A. Z. et al. Serum markers of oxidative stress in infertile women with endometriosis. Rev. Bras. Ginecol. Obstet. 32, 279–285 (2010).

    Article 

    Google Scholar 

  • Da Broi, M. G. et al. Influence of follicular fluid and cumulus cells on oocyte quality: Clinical implications. J. Assist. Reprod. Genet. 35, 735–751. https://doi.org/10.1007/s10815-018-1143-3 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bulletti, C., Coccia, M. E., Battistoni, S. & Borini, A. Endometriosis and infertility. J. Assist. Reprod. Genet. 27, 441–447. https://doi.org/10.1007/s10815-010-9436-1 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barnhart, K., Dunsmoor-Su, R. & Coutifaris, C. Effect of endometriosis on in vitro fertilization. Fertil. Steril. 77, 1148–1155. https://doi.org/10.1016/s0015-0282(02)03112-6 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Ouandaogo, Z. G. et al. Differences in transcriptomic profiles of human cumulus cells isolated from oocytes at GV, MI and MII stages after in vivo and in vitro oocyte maturation. Hum. Reprod. 27, 2438–2447. https://doi.org/10.1093/humrep/des172 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ouandaogo, Z. G. et al. Human cumulus cells molecular signature in relation to oocyte nuclear maturity stage. PLoS ONE 6, e27179. https://doi.org/10.1371/journal.pone.0027179 (2011).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Assou, S., Haouzi, D., De Vos, J. & Hamamah, S. Human cumulus cells as biomarkers for embryo and pregnancy outcomes. Mol. Hum. Reprod. 16, 531–538. https://doi.org/10.1093/molehr/gaq032 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • McKenzie, L. J. et al. Human cumulus granulosa cell gene expression: A predictor of fertilization and embryo selection in women undergoing IVF. Hum. Reprod. 19, 2869–2874. https://doi.org/10.1093/humrep/deh535 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Tanghe, S., Van Soom, A., Nauwynck, H., Coryn, M. & de Kruif, A. Minireview: Functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol. Reprod. Dev. 61, 414–424. https://doi.org/10.1002/mrd.10102 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Furger, C., Cronier, L., Poirot, C. & Pouchelet, M. Human granulosa cells in culture exhibit functional cyclic AMP-regulated gap junctions. Mol. Hum. Reprod. 2, 541–548 (1996).

    CAS 
    Article 

    Google Scholar 

  • Albertini, D. F. & Barrett, S. L. Oocyte-somatic cell communication. Reprod. Suppl. 61, 49–54 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Combelles, C. M., Carabatsos, M. J., Kumar, T. R., Matzuk, M. M. & Albertini, D. F. Hormonal control of somatic cell oocyte interactions during ovarian follicle development. Mol. Reprod. Dev. 69, 347–355. https://doi.org/10.1002/mrd.20128 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Hizaki, H. et al. Abortive expansion of the cumulus and impaired fertility in mice lacking the prostaglandin E receptor subtype EP(2). Proc. Natl. Acad. Sci. USA 96, 10501–10506 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Allegra, A. et al. The gene expression profile of cumulus cells reveals altered pathways in patients with endometriosis. J. Assist. Reprod. Genet. 31, 1277–1285. https://doi.org/10.1007/s10815-014-0305-1 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • da Luz, C. M. et al. PTGS2 down-regulation in cumulus cells of infertile women with endometriosis. Reprod. Biomed. Online 35, 379–386. https://doi.org/10.1016/j.rbmo.2017.06.021 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Da Luz, C. M. et al. Altered transcriptome in cumulus cells of infertile women with advanced endometriosis with and without endometrioma. Reprod. Biomed. Online 42, 952–962. https://doi.org/10.1016/j.rbmo.2021.01.024 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Poli-Neto, O. B., Meola, J., Rosa, E. S. J. C. & Tiezzi, D. Transcriptome meta-analysis reveals differences of immune profile between eutopic endometrium from stage I-II and III-IV endometriosis independently of hormonal milieu. Sci. Rep. 10, 313. https://doi.org/10.1038/s41598-019-57207-y (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adriaenssens, et al. Cumulus cell gene expression is associated with oocyte developmental quality and influenced by patient and treatment characteristics. Hum. Reprod. 25, 1259–1270. https://doi.org/10.1093/humrep/deq049 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Assou, S. et al. The human cumulus–oocyte complex gene-expression profile. Hum. Reprod. 21, 1705–1719. https://doi.org/10.1093/humrep/del065 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Hamel, M. et al. Identification of differentially expressed markers in human follicular cells associated with competent oocytes. Hum. Reprod. 23, 1118–1127. https://doi.org/10.1093/humrep/den048 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • van Montfoort, A. P. et al. Differential gene expression in cumulus cells as a prognostic indicator of embryo viability: A microarray analysis. Mol. Hum. Reprod. 14, 157–168. https://doi.org/10.1093/molehr/gam088 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bettegowda, A. et al. Identification of novel bovine cumulus cell molecular markers predictive of oocyte competence: Functional and diagnostic implications. Biol. Reprod. 79, 301–309. https://doi.org/10.1095/biolreprod.107.067223 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Assidi, M. et al. Identification of potential markers of oocyte competence expressed in bovine cumulus cells matured with follicle-stimulating hormone and/or phorbol myristate acetate in vitro. Biol. Reprod. 79, 209–222. https://doi.org/10.1095/biolreprod.108.067686 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ferrero, H. et al. Single-cell RNA sequencing of oocytes from ovarian endometriosis patients reveals a differential transcriptomic profile associated with lower quality. Hum. Reprod. 34, 1302–1312. https://doi.org/10.1093/humrep/dez053 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Takele Assefa, A., Vandesompele, J. & Thas, O. On the utility of RNA sample pooling to optimize cost and statistical power in RNA sequencing experiments. BMC Genomics 21, 312. https://doi.org/10.1186/s12864-020-6721-y (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21. https://doi.org/10.1093/bioinformatics/bts635 (2013).

    CAS 
    Article 

    Google Scholar 

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. https://doi.org/10.1186/s13059-014-0550-8 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Team RDC. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2008).

  • Saito, H. et al. Endometriosis and oocyte quality. Gynecol. Obstet. Invest. 53(Suppl 1), 46–51 (2002).

    Article 

    Google Scholar 

  • Yanushpolsky, E. H. et al. Effects of endometriomas on ooccyte quality, embryo quality, and pregnancy rates in in vitro fertilization cycles: A prospective, case-controlled study. J. Assist. Reprod. Genet. 15, 193–197. https://doi.org/10.1023/a:1023048318719 (1998).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jianini, B. et al. Peritoneal fluid from infertile women with minimal/mild endometriosis compromises the meiotic spindle of metaphase II bovine oocytes: A pilot study. Reprod. Sci. 24, 1304–1311. https://doi.org/10.1177/1933719116687658 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Pellicer, A. et al. The follicular and endocrine environment in women with endometriosis: Local and systemic cytokine production. Fertil. Steril. 70, 425–431 (1998).

    CAS 
    Article 

    Google Scholar 

  • Da Broi, M. G., Jordão, A. A. Jr., Ferriani, R. A. & Navarro, P. A. Oocyte oxidative DNA damage may be involved in minimal/mild endometriosis-related infertility. Mol. Reprod. Dev. 85, 128–136. https://doi.org/10.1002/mrd.22943 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Lin, X. et al. Excessive oxidative stress in cumulus granulosa cells induced cell senescence contributes to endometriosis-associated infertility. Redox. Biol. 30, 101431. https://doi.org/10.1016/j.redox.2020.101431 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, R. N. et al. The CXCL12-CXCR4 signaling promotes oocyte maturation by regulating cumulus expansion in sheep. Theriogenology 107, 85–94. https://doi.org/10.1016/j.theriogenology.2017.10.039 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Liu, Z. et al. Interleukin-6: An autocrine regulator of the mouse cumulus cell-oocyte complex expansion process. Endocrinology 150, 3360–3368. https://doi.org/10.1210/en.2008-1532 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Z., Shimada, M. & Richards, J. S. The involvement of the Toll-like receptor family in ovulation. J. Assist. Reprod. Genet. 25, 223–228. https://doi.org/10.1007/s10815-008-9219-0 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Büscher, U., Chen, F. C., Kentenich, H. & Schmiady, H. Cytokines in the follicular fluid of stimulated and non-stimulated human ovaries; is ovulation a suppressed inflammatory reaction?. Hum. Reprod. 14, 162–166. https://doi.org/10.1093/humrep/14.1.162 (1999).

    Article 
    PubMed 

    Google Scholar 

  • Sarapik, A. et al. Follicular proinflammatory cytokines and chemokines as markers of IVF success. Clin. Dev. Immunol. 2012, 606459. https://doi.org/10.1155/2012/606459 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bradley, J. R. TNF-mediated inflammatory disease. J. Pathol. 214, 149–160. https://doi.org/10.1002/path.2287 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Fülöp, C. et al. Impaired cumulus mucification and female sterility in tumor necrosis factor-induced protein-6 deficient mice. Development 130, 2253–2261. https://doi.org/10.1242/dev.00422 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Milner, C. M. & Day, A. J. TSG-6: A multifunctional protein associated with inflammation. J. Cell Sci. 116, 1863–1873. https://doi.org/10.1242/jcs.00407 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Richards, J. S., Russell, D. L., Robker, R. L., Dajee, M. & Alliston, T. N. Molecular mechanisms of ovulation and luteinization. Mol. Cell Endocrinol. 145, 47–54. https://doi.org/10.1016/s0303-7207(98)00168-3 (1998).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Gérard, N., Caillaud, M., Martoriati, A., Goudet, G. & Lalmanach, A. C. The interleukin-1 system and female reproduction. J. Endocrinol. 180, 203–212. https://doi.org/10.1677/joe.0.1800203 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Ad Blocker Detected

    Our website is made possible by displaying online advertisements to our visitors. Please consider supporting us by disabling your ad blocker.

    Refresh